Purkinje cells from RyR2 mutant mice are highly arrhythmogenic but responsive to targeted therapy.

نویسندگان

  • Guoxin Kang
  • Steven F Giovannone
  • Nian Liu
  • Fang-Yu Liu
  • Jie Zhang
  • Silvia G Priori
  • Glenn I Fishman
چکیده

RATIONALE The Purkinje fiber network has been proposed as the source of arrhythmogenic Ca(2+) release events in catecholaminergic polymorphic ventricular tachycardia (CPVT), yet evidence supporting this mechanism at the cellular level is lacking. OBJECTIVE We sought to determine the frequency and severity of spontaneous Ca(2+) release events and the response to the antiarrhythmic agent flecainide in Purkinje cells and ventricular myocytes from RyR2(R4496C/+) CPVT mutant mice and littermate controls. METHODS AND RESULTS We crossed RyR2(R4496C/+) knock-in mice with the newly described Cntn2-EGFP BAC transgenic mice, which express a fluorescent reporter gene in cells of the cardiac conduction system, including the distal Purkinje fiber network. Isolated ventricular myocytes (EGFP(-)) and Purkinje cells (EGFP(+)) from wild-type hearts and mutant hearts were distinguished by epifluorescence and intracellular Ca(2+) dynamics recorded by microfluorimetry. Both wild-type and RyR2(R4496C/+) mutant Purkinje cells displayed significantly slower kinetics of activation and relaxation compared to ventricular myocytes of the same genotype, and tau(decay) in the mutant Purkinje cells was significantly slower than that observed in wild-type Purkinje cells. Of the 4 groups studied, RyR2(R4496C/+) mutant Purkinje cells were also most likely to develop spontaneous Ca(2+) release events, and the number of events per cell was also significantly greater. Furthermore, with isoproterenol treatment, although all 4 groups showed increases in the frequency of arrhythmogenic Ca(2+(i)) events, the RyR2(R4496C/+) Purkinje cells responded with the most profound abnormalities in intracellular Ca(2+) handling, including a significant increase in the frequency of unstimulated Ca(2+(i)) events and the development of alternans, as well as isolated and sustained runs of triggered beats. Both Purkinje cells and ventricular myocytes from wild-type mice showed suppression of spontaneous Ca(2+) release events with flecainide, whereas in RyR2(R4496C/+) mice, the Purkinje cells were preferentially responsive to drug. In contrast, the RyR2 blocker tetracaine was equally efficacious in mutant Purkinje cells and ventricular myocytes. CONCLUSIONS Purkinje cells display a greater propensity to develop abnormalities in intracellular Ca(2+) handling than ventricular myocytes. This proarrhythmic behavior is enhanced by disease-causing mutations in the RyR2 Ca(2+) release channel and greatly exacerbated by catecholaminergic stimulation, with the development of arrhythmogenic triggered beats. These data support the concept that Purkinje cells are critical contributors to arrhythmic triggers in animal models and humans with CPVT and suggest a broader role for the Purkinje fiber network in the genesis of ventricular arrhythmias.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellular Biology Purkinje Cells From RyR2 Mutant Mice Are Highly Arrhythmogenic But Responsive to Targeted Therapy

Rationale: The Purkinje fiber network has been proposed as the source of arrhythmogenic Ca release events in catecholaminergic polymorphic ventricular tachycardia (CPVT), yet evidence supporting this mechanism at the cellular level is lacking. Objective: We sought to determine the frequency and severity of spontaneous Ca release events and the response to the antiarrhythmic agent flecainide in ...

متن کامل

Arrhythmogenic mechanisms in a mouse model of catecholaminergic polymorphic ventricular tachycardia.

Catecholaminergic polymorphic ventricular tachycardia (VT) is a lethal familial disease characterized by bidirectional VT, polymorphic VT, and ventricular fibrillation. Catecholaminergic polymorphic VT is caused by enhanced Ca2+ release through defective ryanodine receptor (RyR2) channels. We used epicardial and endocardial optical mapping, chemical subendocardial ablation with Lugol's solution...

متن کامل

Mice with the R176Q cardiac ryanodine receptor mutation exhibit catecholamine-induced ventricular tachycardia and cardiomyopathy.

Mutations in the cardiac ryanodine receptor 2 (RyR2) have been associated with catecholaminergic polymorphic ventricular tachycardia and a form of arrhythmogenic right ventricular dysplasia. To study the relationship between RyR2 function and these phenotypes, we developed knockin mice with the human disease-associated RyR2 mutation R176Q. Histologic analysis of hearts from RyR2(R176Q/+) mice r...

متن کامل

Phospholamban knockout breaks arrhythmogenic Ca²⁺ waves and suppresses catecholaminergic polymorphic ventricular tachycardia in mice.

RATIONALE Phospholamban (PLN) is an inhibitor of cardiac sarco(endo)plasmic reticulum Ca²⁺ ATPase. PLN knockout (PLN-KO) enhances sarcoplasmic reticulum Ca²⁺ load and Ca²⁺ leak. Conversely, PLN-KO accelerates Ca²⁺ sequestration and aborts arrhythmogenic spontaneous Ca²⁺ waves (SCWs). An important question is whether these seemingly paradoxical effects of PLN-KO exacerbate or protect against Ca²...

متن کامل

Ryanodine receptor mutations associated with stress-induced ventricular tachycardia mediate increased calcium release in stimulated cardiomyocytes.

Ca2+ release from the sarcoplasmic reticulum mediated by the cardiac ryanodine receptor (RyR2) is a fundamental event in cardiac muscle contraction. RyR2 mutations suggested to cause defective Ca2+ channel function have recently been identified in catecholaminergic polymorphic ventricular tachycardia (CPVT) and arrhythmogenic right ventricular dysplasia (ARVD) affected individuals. We report ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 107 4  شماره 

صفحات  -

تاریخ انتشار 2010